class 
AdaptiveCompositeIntegrator1D 
Adaptive composite integrator: step size is set to be small if functional variation of integrand is large
The integrator in individual intervals (base integrator) should be specified by constructor.

class 
ExtendedTrapezoidIntegrator1D 
The trapezoid integration rule is a twopoint NewtonCotes formula that
approximates the area under the curve as a trapezoid.

class 
GaussHermiteQuadratureIntegrator1D 
GaussHermite quadrature approximates the value of integrals of the form
$$
\begin{align*}
\int_{\infty}^{\infty} e^{x^2} g(x) dx
\end{align*}
$$
The weights and abscissas are generated by GaussHermiteWeightAndAbscissaFunction .

class 
GaussianQuadratureIntegrator1D 
Class that performs integration using Gaussian quadrature.

class 
GaussJacobiQuadratureIntegrator1D 
GaussJacobi quadrature approximates the value of integrals of the form
$$
\begin{align*}
\int_{1}^{1} (1  x)^\alpha (1 + x)^\beta f(x) dx
\end{align*}
$$
The weights and abscissas are generated by GaussJacobiWeightAndAbscissaFunction .

class 
GaussLaguerreQuadratureIntegrator1D 
GaussLaguerre quadrature approximates the value of integrals of the form
$$
\begin{align*}
\int_{0}^{\infty} e^{x}f(x) dx
\end{align*}
$$
The weights and abscissas are generated by GaussLaguerreWeightAndAbscissaFunction .

class 
GaussLegendreQuadratureIntegrator1D 
GaussLegendre quadrature approximates the value of integrals of the form
$$
\begin{align*}
\int_{1}^{1} f(x) dx
\end{align*}
$$
The weights and abscissas are generated by GaussLegendreWeightAndAbscissaFunction .

class 
Integrator1D<T,U> 
Class for defining the integration of 1D functions.

class 
Integrator2D<T,U> 
Class for defining the integration of 2D functions.

class 
IntegratorRepeated2D 
Two dimensional integration by repeated one dimensional integration using Integrator1D .

class 
RombergIntegrator1D 

class 
RungeKuttaIntegrator1D 
Adapted from the forthorder RungeKutta method for solving ODE.

class 
SimpsonIntegrator1D 
Simpson's integration rule is a NewtonCotes formula that approximates the
function to be integrated with quadratic polynomials before performing the
integration.
