Class ParameterizedCurve
- java.lang.Object
 - 
- com.opengamma.strata.math.impl.function.ParameterizedFunction<Double,DoubleArray,Double>
 - 
- com.opengamma.strata.math.impl.function.ParameterizedCurve
 
 
 
- 
public abstract class ParameterizedCurve extends ParameterizedFunction<Double,DoubleArray,Double>
A parameterised curve that gives the both the curve (the function y=f(x) where x and y are scalars) and the curve sensitivity (dy/dp where p is one of the parameters) for given parameters. 
- 
- 
Constructor Summary
Constructors Constructor Description ParameterizedCurve() 
- 
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Function<Double,DoubleArray>getYParameterSensitivity(DoubleArray params)For a scalar function (curve) that can be written as $y=f(x;\boldsymbol{\theta})$ where x & y are scalars and $\boldsymbol{\theta})$ is a vector of parameters (i.e.- 
Methods inherited from class com.opengamma.strata.math.impl.function.ParameterizedFunction
asFunctionOfArguments, asFunctionOfParameters, evaluate, getNumberOfParameters 
 - 
 
 - 
 
- 
- 
Method Detail
- 
getYParameterSensitivity
public Function<Double,DoubleArray> getYParameterSensitivity(DoubleArray params)
For a scalar function (curve) that can be written as $y=f(x;\boldsymbol{\theta})$ where x & y are scalars and $\boldsymbol{\theta})$ is a vector of parameters (i.e. $x,y \in \mathbb{R}$ and $\boldsymbol{\theta} \in \mathbb{R}^n$) this returns the function $g : \mathbb{R} \to \mathbb{R}^n; x \mapsto g(x)$, which is the function's (curve's) sensitivity to its parameters, i.e. $g(x) = \frac{\partial f(x;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$The default calculation is performed using finite difference (via
ScalarFieldFirstOrderDifferentiator) but it is expected that this will be overridden by concrete subclasses.- Parameters:
 params- the value of the parameters ($\boldsymbol{\theta}$) at which the sensitivity is calculated- Returns:
 - the sensitivity as a function with a Double (x) as its single argument and a vector as its return value
 
 
 - 
 
 -