Package com.opengamma.strata.math.impl.function.special
-
Class Summary Class Description GammaFunction The gamma function is a generalization of the factorial to complex and real numbers.HermitePolynomialFunction IncompleteBetaFunction The incomplete beta function is defined as: $$ \begin{equation*} I_x(a, b)=\frac{B_x(a, b)}{B(a, b)}\int_0^x t^{a-1}(1-t)^{b-1}dt \end{equation*} $$ where $a,b>0$.IncompleteGammaFunction The incomplete gamma function is defined as: $$ \begin{equation*} P(a, x) = \frac{\gamma(a, x)}{\Gamma(a)}\int_0^x e^{-t}t^{a-1}dt \end{equation*} $$ where $a > 0$.InverseIncompleteBetaFunction InverseIncompleteGammaFunction JacobiPolynomialFunction LaguerrePolynomialFunction LegendrePolynomialFunction NaturalLogGammaFunction The natural logarithm of the Gamma functionGammaFunction
.OrthogonalPolynomialFunctionGenerator OrthonormalHermitePolynomialFunction TopHatFunction Class representing the top-hat function, defined as: $$ \begin{align*} T(x)= \begin{cases} 0 & x < x_1\\ y & x_1 < x < x_2\\ 0 & x > x_2 \end{cases} \end{align*} $$ where $x_1$ is the lower edge of the "hat", $x_2$ is the upper edge and $y$ is the height of the function.