Class GaussJacobiQuadratureIntegrator1D
- java.lang.Object
-
- com.opengamma.strata.math.impl.integration.Integrator1D<Double,Double>
-
- com.opengamma.strata.math.impl.integration.GaussianQuadratureIntegrator1D
-
- com.opengamma.strata.math.impl.integration.GaussJacobiQuadratureIntegrator1D
-
public class GaussJacobiQuadratureIntegrator1D extends GaussianQuadratureIntegrator1D
Gauss-Jacobi quadrature approximates the value of integrals of the form $$ \begin{align*} \int_{-1}^{1} (1 - x)^\alpha (1 + x)^\beta f(x) dx \end{align*} $$ The weights and abscissas are generated byGaussJacobiWeightAndAbscissaFunction
.In this integrator, $\alpha = 0$ and $\beta = 0$, which means that no adjustment to the function must be performed. However, the function is scaled in such a way as to allow any values for the limits of the integrals.
-
-
Constructor Summary
Constructors Constructor Description GaussJacobiQuadratureIntegrator1D(int n)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Function<Double,Double>
getIntegralFunction(Function<Double,Double> function, Double lower, Double upper)
Returns a function that is valid for both the type of quadrature and the limits of integration.Double[]
getLimits()
Gets the limits.-
Methods inherited from class com.opengamma.strata.math.impl.integration.GaussianQuadratureIntegrator1D
equals, hashCode, integrate, integrateFromPolyFunc
-
Methods inherited from class com.opengamma.strata.math.impl.integration.Integrator1D
integrate
-
-
-
-
Method Detail
-
getLimits
public Double[] getLimits()
Description copied from class:GaussianQuadratureIntegrator1D
Gets the limits.- Specified by:
getLimits
in classGaussianQuadratureIntegrator1D
- Returns:
- The lower and upper limits for which the quadrature is valid
-
getIntegralFunction
public Function<Double,Double> getIntegralFunction(Function<Double,Double> function, Double lower, Double upper)
Returns a function that is valid for both the type of quadrature and the limits of integration. To evaluate an integral over $[a, b]$, a change of interval must be performed: $$ \begin{align*} \int_a^b f(x)dx &= \frac{b - a}{2}\int_{-1}^1 f(\frac{b - a}{2} x + \frac{a + b}{2})dx\\ &\approx \frac{b - a}{2}\sum_{i=1}^n w_i f(\frac{b - a}{2} x + \frac{a + b}{2}) \end{align*} $$- Specified by:
getIntegralFunction
in classGaussianQuadratureIntegrator1D
- Parameters:
function
- The function to be integrated, not nulllower
- The lower integration limit, not nullupper
- The upper integration limit, not null- Returns:
- A function in the appropriate form for integration
-
-