Class BicubicSplineInterpolator


  • public class BicubicSplineInterpolator
    extends PiecewisePolynomialInterpolator2D
    Given a set of data (x0Values_i, x1Values_j, yValues_{ij}), derive the piecewise bicubic function, f(x0,x1) = sum_{i=0}^{3} sum_{j=0}^{3} coefMat_{ij} (x0-x0Values_i)^{3-i} (x1-x1Values_j)^{3-j}, for the region x0Values_i < x0 < x0Values_{i+1}, x1Values_j < x1 < x1Values_{j+1} such that f(x0Values_a, x1Values_b) = yValues_{ab} where a={i,i+1}, b={j,j+1}. 1D piecewise polynomial interpolation methods are called to determine first derivatives and cross derivative at data points Note that the value of the cross derivative at {ij} is not "accurate" if yValues_{ij} = 0.