Class LeastSquareWithPenaltyResults

    • Constructor Detail

      • LeastSquareWithPenaltyResults

        public LeastSquareWithPenaltyResults​(double chiSqr,
                                             double penalty,
                                             DoubleArray parameters,
                                             DoubleMatrix covariance)
        Holder for the results of minimising $\sum_{i=1}^N (y_i - f_i(\mathbf{x}))^2 + \mathbf{x}^T\mathbf{P}\mathbf{x}$ WRT $\mathbf{x}$ (the vector of model parameters).
        Parameters:
        chiSqr - The value of the first term (the chi-squared)- the sum of squares between the 'observed' values $y_i$ and the model values $f_i(\mathbf{x})$
        penalty - The value of the second term (the penalty)
        parameters - The value of $\mathbf{x}$
        covariance - The covariance matrix for $\mathbf{x}$
      • LeastSquareWithPenaltyResults

        public LeastSquareWithPenaltyResults​(double chiSqr,
                                             double penalty,
                                             DoubleArray parameters,
                                             DoubleMatrix covariance,
                                             DoubleMatrix inverseJacobian)
        Holder for the results of minimising $\sum_{i=1}^N (y_i - f_i(\mathbf{x}))^2 + \mathbf{x}^T\mathbf{P}\mathbf{x}$ WRT $\mathbf{x}$ (the vector of model parameters).
        Parameters:
        chiSqr - The value of the first term (the chi-squared)- the sum of squares between the 'observed' values $y_i$ and the model values $f_i(\mathbf{x})$
        penalty - The value of the second term (the penalty)
        parameters - The value of $\mathbf{x}$
        covariance - The covariance matrix for $\mathbf{x}$
        inverseJacobian - The inverse Jacobian - this is the sensitivities of the model parameters to the 'observed' values
    • Method Detail

      • getPenalty

        public double getPenalty()
        Gets the value of the penalty.
        Returns:
        the penalty