Class LeastSquareWithPenaltyResults
- java.lang.Object
-
- com.opengamma.strata.math.impl.statistics.leastsquare.LeastSquareResults
-
- com.opengamma.strata.math.impl.statistics.leastsquare.LeastSquareWithPenaltyResults
-
public class LeastSquareWithPenaltyResults extends LeastSquareResults
Hold for results ofNonLinearLeastSquareWithPenalty.
-
-
Constructor Summary
Constructors Constructor Description LeastSquareWithPenaltyResults(double chiSqr, double penalty, DoubleArray parameters, DoubleMatrix covariance)Holder for the results of minimising $\sum_{i=1}^N (y_i - f_i(\mathbf{x}))^2 + \mathbf{x}^T\mathbf{P}\mathbf{x}$ WRT $\mathbf{x}$ (the vector of model parameters).LeastSquareWithPenaltyResults(double chiSqr, double penalty, DoubleArray parameters, DoubleMatrix covariance, DoubleMatrix inverseJacobian)Holder for the results of minimising $\sum_{i=1}^N (y_i - f_i(\mathbf{x}))^2 + \mathbf{x}^T\mathbf{P}\mathbf{x}$ WRT $\mathbf{x}$ (the vector of model parameters).
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description doublegetPenalty()Gets the value of the penalty.-
Methods inherited from class com.opengamma.strata.math.impl.statistics.leastsquare.LeastSquareResults
equals, getChiSq, getCovariance, getFitParameters, getFittingParameterSensitivityToData, hashCode, toString
-
-
-
-
Constructor Detail
-
LeastSquareWithPenaltyResults
public LeastSquareWithPenaltyResults(double chiSqr, double penalty, DoubleArray parameters, DoubleMatrix covariance)Holder for the results of minimising $\sum_{i=1}^N (y_i - f_i(\mathbf{x}))^2 + \mathbf{x}^T\mathbf{P}\mathbf{x}$ WRT $\mathbf{x}$ (the vector of model parameters).- Parameters:
chiSqr- The value of the first term (the chi-squared)- the sum of squares between the 'observed' values $y_i$ and the model values $f_i(\mathbf{x})$penalty- The value of the second term (the penalty)parameters- The value of $\mathbf{x}$covariance- The covariance matrix for $\mathbf{x}$
-
LeastSquareWithPenaltyResults
public LeastSquareWithPenaltyResults(double chiSqr, double penalty, DoubleArray parameters, DoubleMatrix covariance, DoubleMatrix inverseJacobian)Holder for the results of minimising $\sum_{i=1}^N (y_i - f_i(\mathbf{x}))^2 + \mathbf{x}^T\mathbf{P}\mathbf{x}$ WRT $\mathbf{x}$ (the vector of model parameters).- Parameters:
chiSqr- The value of the first term (the chi-squared)- the sum of squares between the 'observed' values $y_i$ and the model values $f_i(\mathbf{x})$penalty- The value of the second term (the penalty)parameters- The value of $\mathbf{x}$covariance- The covariance matrix for $\mathbf{x}$inverseJacobian- The inverse Jacobian - this is the sensitivities of the model parameters to the 'observed' values
-
-